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Abstract

We develop a theoretical basis for creating color histograms that are in-
variant under deformation or changes in viewpoint. The gradients in differ-
ent color channels weight the influence of a pixel on the histogram so as to
cancel out the changes induced by deformations. Experiments show these
histograms to be invariant under a variety of distortions and changes in view-
point.

1 Introduction

Color histograms have been widely used for object recognition. Though in practice these
histograms often vary slowly under changes in viewpoint, itis clear that the color his-
togram generated from an image surface is intimately tied upwith the geometry of that
surface, and the viewing position. In this paper, we suggesta method to create color his-
tograms based on the color gradients. We will see that our method is invariant under any
mapping of the surface which islocally affine, and thus a very wide class of viewpoint
changes or deformations.

1.1 Related Work

The use of color histograms for recognition was initiated ina famous paper by Swain
and Ballard [4]. This paper used simple color histograms forobject recognition, with
surprisingly strong results. Among the work that followed this, Funt and Finlayson [1]
reduce sensitivity to lighting by considering changes among neighboring pixels, similarly
to Land’s Retinex theory. Stricker and Orengo [3] provide a measure of color similarity
between images, storing only the dominant features of the histogram. They interpret the
color histogram as a probability distribution, and then store only the central moments.

2 Derivation

Our derivation will proceed as follows. First, we will explore how small areas change in
size under a given local affine transformation. Next, we willshow that, given two corre-
sponding points, the derivatives in two color channels may be used to recover the relevant



parameters of the homography, and thus the ratio of differential areas.1 Finally, we will
show that on this basis, the derivatives can be used to ’weight’ pixels when constructing
a color histogram to cancel out viewpoint dependent effects.

2.1 Local Affine Approximation

Given two corresponding points in two images, one can changecoordinate systems such
that both points lie at the origin in their respective systems. Consider this done. Assuming
that the transformation between the two images is continuous, it is locally linear. Note that
this is a weak assumption, satisfied by transformations suchas homographies, changes in
viewpoint or smooth deformations. Thus, forinfinitesimalx we can write the local affine
transformation as

x = Hx′ (1)

where

H =

[

A B
C D

]

. (2)

Here,x′ andx are the points in the first and second coordinate systems, respectively.

2.2 Differential Area From Gradients

By definition, the differential area in the first coordinate system is

da′ = dx′dy′. (3)

We can then find the corresponding area in the second coordinate system.

da= |
∂x
∂x′

×
∂x
∂y′

| = |AD−BC|dx′dy′ (4)

So, the ratio of differential areas is

da
da′

= |AD−BC|. (5)

2.3 Invariant Color Histograms

Denote the image intensity function in one color channel byf (x,y) = f ′(x′,y′). Using
standard calculus, we can relate the image derivatives.

∂ f ′

∂x′
=

∂ f
∂x

∂x
∂x′

+
∂ f
∂y

∂y
∂x′

(6)

∂ f ′

∂y′
=

∂ f
∂x

∂x
∂y′

+
∂ f
∂y

∂y
∂y′

(7)

1We emphasize that no correspondence is used in our technique- this is merely an artifact of the derivation.



Now, write the derivative off with respect tox, evaluated at the origin asfx, and for
f ′ similarly. Evaluating the coordinate derivatives yields

f ′x = fxA+ fyC (8)

f ′y = fxB+ fyD. (9)

Notice that, given only the derivates off in both images, it will not be possible to
recover|AD−BC|, and thus the differential area. Two solutions to this problem are ap-
parent. First, one could use higher-order derivatives. Second, one can use other color
channels. Given the difficulty of accurately measuring high-order derivatives, we will
pursue the second option in this work. Denote the image intensity function in a second
color byg. The derivatives will obey the same constraints as above.

g′x = gxA+gyC (10)

g′y = gxB+gyD (11)

Now, given all derivatives, it is possible to solve for each of A, B, C, andD.

A =
fyg′x−gy f ′x
fxgy−gx fy

, B =
fyg′y−gy f ′y
fxgy−gx fy

C =
fcg′x−gc f ′x
fxgy−gx fy

, D =
fcg′y−gx f ′y
fxgy−gx fy

(12)

Substituting these expressions into Equation 5 and simplifying gives us

da
da′

= |AD−CB|=
| f ′xg

′
y− f ′yg

′
x|

| fxgy− fygx|
. (13)

We can now see a direct relationship between the color derivatives, and the differential
areas.

da| fxgy− fygx| = da′| f ′xg
′
y− f ′yg

′
x| (14)

This is the key relationship that we will use to construct invariant color histograms.
Notice that one can consider the gradients of the two color channels as vectors. Then,
Equation 14 says that the differential area, times the norm of the cross product of the
color gradients is invariant.

If we take integrals over the areas in both images with a givencolor, these integrals
will be equal, and so no correspondence is required. If the color of pixel x is some integer
xc, then,

∫

x:xc=c
| fx(x)gy(x)− fy(x)gx(x)|da=

∫

x′:x′c=c
| f ′x(x

′)g′y(x
′)− f ′y(x

′)g′x(x
′)|da′. (15)

Intuitively, the contribution in the integral in Equation 15 will be largest when there
are significant gradient magnitudes in both color channels,and these gradients are in
different directions.



3 Algorithm

Using Equation 14, we can create a very simple algorithm to create deformation invariant
color histograms. In our notation, the histogram componentfor colorc, hc, in atraditional
color histogram is

hc = ∑
s:sc=c

1. (16)

The only difference with our method is that, rather than eachpixel getting one ’vote’,
the influence of each pixel is weighted by a function of the derivatives.

hc = ∑
s:sc=c

w(s) (17)

w(s) = | fx(s)gy(s)− fy(s)gx(s)| (18)

4 Implementation

In the experiments in this paper, we used 5 color bins in each of the three color chan-
nels, resulting in a total of 125 bins. Using such a coarse sampling of the color space is
principally for display purposes. In our experiments, it was possible to accurately recover
histograms with many more colors.

This method requires derivatives in two color channels,f andg. Here, we have used
red as one channel, and the average of green and blue for the other. Derivatives are taken
in the simplest possible way, though convolution with the filters

[

−1 0 1
]

and





−1
0
1



 . (19)

Experimentation with more complex methods of measuring thederivative have shown
the above filters to be preferred.

5 Experiments

In all the synthetic experiments shown in this paper, the initial images are first processed
with a low-pass filter to make derivatives more reliable. This filter is applied once, before
warping, and so no similar process can be applied with real images. See Section 6 for
further discussion of this issue.

As a first example, Figure 1 shows the computation of an invariant histogram, and
compares it to a traditional histogram. We emphasize that the only difference in the
computation of the two histograms is as contrasted in Equations 16 and 17.

In our experiments, we seek to answer two questions. First, how do invariant his-
tograms change under deformation or change in viewpoint? Wewill see that invariant
histograms are nearly unchanging under distortions or viewpoint changes that lead to
large changes in traditional histograms. Secondly, how do invariant histograms change
under true changes in the scene? If the invariance was gainedat the price of simply being
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Figure 1: First row: initial image, andh(·) mapped over it. Second row: image warped
under a homography, andh(·) mapped over it. Third row: traditional (unweighted) color
histogram. Fourth row: Invariant color histogram.

insensitive to the images, we would not have a useful technique. We will see that this is
not the case- under true changes in the scene, invariant histograms appear to have similar
sensitivity as traditional histograms.

To investigate changes under deformation, we warped an image under a range of radial
distortions, and computed histograms for each resulting image. To compute the difference
of two histograms we used the sum of squared differences. To make the comparison
between traditional and invariant histograms meaningful despite traditional histograms
having vastly higher magnitudes, the error is scaled by the sum of squares of the first
histogram.

difference(hA
,hB) =

∑c(h
A
c −hB

c )2

∑c(hA
c )2 (20)

Results are shown in Figure 2. We can observe that though traditional histograms
increase in difference with larger distortions, the invariant histograms are essentially un-
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Figure 2: Histograms under radial distortion. First row: The first image, and the result
of warping it under the minimum and maximum distortion coefficients. Second row: The
sum of absolute differences of the first image and each of the warped image. Bottom rows
show traditional and invariant histograms comparing images as labeled.

changed. Since the image we have used are taken from a stereo sequence [2], we can
compare how histograms change under small change in structure. Here, the actual sur-
faces in view are changing, so invariance is neither expected nor desired. In Figure 2 we
compare the histograms resulting from images taken with a continually increasing view-
point. Here, the invariant histogram has similar performance to the traditional histogram.
Notice particularly that despite the small change in viewpoint, the differences for the in-
variant histogram quickly become larger than those resulting from the major distortions
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Figure 3: Effects of changing scene. Left: First image. Center: Final image. Right:
Histogram differences computed with respect to the first image in the scene. Compare to
Figure 2.

in Figure 2. This suggests that invariance with respect to deformation is possible with out
giving up sensitivity to true changes in the scene.

In Figure 4 we see the behavior of histograms under a range of projective trans-
formation. There, the first image was warped under a range of homographies,H =
λH1 +(1−λ )H2 where 0<= λ <= 1 We should note that forλ = .5, H = I . We see
again here that the invariant histogram remains very similar despite the distortions.

Finally, Figure 5 shows traditional and invariant histograms derived from a pair of
real images. The errors in the invariant histogram are likely due to the fact that that
this technique accounts for deformation changes only- no attempt is made to account for
changes due to lighting conditions, or image noise.

6 Conclusions

In this paper we have seen that, given two corresponding points in two images, if the
gradients in two color channels were available, the local affine transformation could be
recovered. On this basis, it is possible to construct a measure using the gradients which
cancels out the changes in image area resulting from viewpoint. Using this measure, we
can integrate over areas in two images having a given color. The resulting value will be
invariant to any transformation which is locally affine, andhence essentially any smooth
transformation.

Future work should further address practical issues with finding these histograms in
real images. One could incorporate techniques to overcome color changes due to lighting
[1]. Another issue is the measure of ’difference’ between two invariant histograms. Im-
ages, and specifically gradient measurements are inevitably corrupted by noise. If many
measurements are taken the noise is likely to average out, but this will not occur for few
measurements. A close observation of some of our results suggests that errors result in the
histogram precisely at those points that have the smallest components in the traditional
histogram, and thusat those points derived from the fewest image measurements. Thus,
when measuring the ’distance’ between two invariant histograms, it would be natural use
the number of pixels having each value, to weight the importance of each component.
This could be naturally phrased in a probabilistic view.

The technique developed in this paper will only work so far asthe mathematical model
of the problem is accurate. We emphasize that this is often not the case. The method is
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Figure 4: Histograms under projective transformations. First row: The first image, and
the result of warping it underH1 andH2. Second row: The sum of absolute differences of
the first image and each of the warped image. Bottom rows show traditional and invariant
histograms comparing images as labeled.
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Figure 5: Traditional and Invariant histograms derived from segmented regions of two
real images.

invariant only to pure deformations of the scene. In real images, however, other effects
will often be present. These include changes due to reflectance, and illumination, for
which the literature offers several potential solutions. Perhaps more problematic is the
fact that filtering is present in the imaging process. This means that the signals in two
images are not just transformed version of each other- different signals are present.

Intuitively, our model of the imaging process suggests thatan image of a physical
object is simply the projection of the intensity function onto the image plane. Crucially,
our model states that if the scale of the observed object is halved, all derivatives will be
doubled. However, if a real image is taken of a rich texture from far away, rather than
resulting in high derivatives, the image will often be near aconstant color, with verylow
derivatives. If a technique is to work for arbitrary objectsand scales, it will be necessary
to properly account for the real behavior of images under scale changes.

The present work is extendable in two major directions. First one could use measure-
ments other than gradients to do the ’balancing’ required tocreate invariance. Using other
measurements here could significantly increase robustnessof image effects. Second, one
could create histograms of quantities other than color. By using histograms of more so-
phisticated filters, it is likely that recognition of regions could be made significantly more
powerful.
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