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Abstract

We develop a theoretical basis for creating color histogrémat are in-
variant under deformation or changes in viewpoint. The igratd in differ-
ent color channels weight the influence of a pixel on the gistm so as to
cancel out the changes induced by deformations. Expersrshw these
histograms to be invariant under a variety of distortiord emanges in view-
point.

1 Introduction

Color histograms have been widely used for object recagmifThough in practice these
histograms often vary slowly under changes in viewpoinis itlear that the color his-
togram generated from an image surface is intimately tieditip the geometry of that
surface, and the viewing position. In this paper, we suggesethod to create color his-
tograms based on the color gradients. We will see that ounadas invariant under any
mapping of the surface which lscally affine, and thus a very wide class of viewpoint
changes or deformations.

1.1 Related Work

The use of color histograms for recognition was initiatechifamous paper by Swain
and Ballard [4]. This paper used simple color histogramsofaect recognition, with

surprisingly strong results. Among the work that followéést Funt and Finlayson [1]
reduce sensitivity to lighting by considering changes agnogighboring pixels, similarly
to Land’s Retinex theory. Stricker and Orengo [3] provide@asure of color similarity

between images, storing only the dominant features of tstedriam. They interpret the
color histogram as a probability distribution, and thenrestnly the central moments.

2 Derivation

Our derivation will proceed as follows. First, we will expdohow small areas change in
size under a given local affine transformation. Next, we slilbw that, given two corre-
sponding points, the derivatives in two color channels mayded to recover the relevant



parameters of the homography, and thus the ratio of diffedeareas: Finally, we will
show that on this basis, the derivatives can be used to "weigtels when constructing
a color histogram to cancel out viewpoint dependent effects

2.1 Local Affine Approximation

Given two corresponding points in two images, one can changalinate systems such
that both points lie at the origin in their respective systef@onsider this done. Assuming
that the transformation between the two images is contigyibis locally linear. Note that
this is a weak assumption, satisfied by transformations as¢tomographies, changes in
viewpoint or smooth deformations. Thus, fafinitesimalx we can write the local affine
transformation as

X =Hx (1)

where
A B
H{CD] @)
Here,x’ andx are the points in the first and second coordinate systenpecteely.

2.2 Differential Area From Gradients

By definition, the differential area in the first coordinaystem is

dd = dxdy. 3)
We can then find the corresponding area in the second cotedipstem.
ox  Ox
So, the ratio of differential areas is
da
— = |AD—-BC|.
4z = AD-BC (5)

2.3 Invariant Color Histograms

Denote the image intensity function in one color channeffby;y) = f'(X,y). Using
standard calculus, we can relate the image derivatives.

of"  odf ox of dy

X~ axax | dyox 6)

of _ ot ox ot dy

oy~ oxay T dyay )

1We emphasize that no correspondence is used in our techiiiisiés merely an artifact of the derivation.



Now, write the derivative of with respect tok, evaluated at the origin &g, and for
f’ similarly. Evaluating the coordinate derivatives yields

fy = fxA+ f,C (8)

f = f,B+ f,D. (9)

Notice that, given only the derivates 6fin both images, it will not be possible to
recover|]AD — BC|, and thus the differential area. Two solutions to this peabkre ap-
parent. First, one could use higher-order derivatives.oS&cone can use other color
channels. Given the difficulty of accurately measuring kigtier derivatives, we will
pursue the second option in this work. Denote the image sitiefunction in a second
color byg. The derivatives will obey the same constraints as above.

O = A+ g,C (10)

9; =oxB+g,D (11)
Now, given all derivatives, it is possible to solve for ea¢t®pB, C, andD.

_ Moot 5 e -oh

- fxQy — Oxfy’ - fxgi/ - gxfyf (12)
oo fedi—gch _ Tegy—ody
fxgy — Oxfy’ fxgy — Oxfy
Substituting these expressions into Equation 5 and siyipgjfgives us
da | gy — fyg
— =|AD-CB| = ——. 13
da | | | fx0y — fyOx| (13)

We can now see a direct relationship between the color dié@g and the differential

areas.
dalfgy — fygx| = da| fygy, — fyg| (14)

This is the key relationship that we will use to constructirnant color histograms.
Notice that one can consider the gradients of the two colanphls as vectors. Then,
Equation 14 says that the differential area, times the ndrithe cross product of the
color gradients is invariant.

If we take integrals over the areas in both images with a goaar, these integrals
will be equal, and so no correspondence is required. If ther of pixel x is some integer
Xc, then,

() gy () — fy(X)gx(x)|dd.  (15)

" Xg=C

/ - IKOG9gy(x) = fy(x)ax(x)|da= /
XXc=C y

Intuitively, the contribution in the integral in Equatio® Will be largest when there
are significant gradient magnitudes in both color chanreaisl these gradients are in
different directions.



3 Algorithm

Using Equation 14, we can create a very simple algorithmeaterdeformation invariant
color histograms. In our notation, the histogram compof@rdolorc, hg, in atraditional
color histogram is

he= 5 1 (16)

s:&=cC

The only difference with our method is that, rather than gzigbl getting one 'vote’,
the influence of each pixel is weighted by a function of thevddives.

he = z w(s) a7
siS§—c
W(s) = | fx(s)gy(s) — fy(s)ax(s)] (18)

4 Implementation

In the experiments in this paper, we used 5 color bins in e&¢heothree color chan-
nels, resulting in a total of 125 bins. Using such a coarsepagof the color space is
principally for display purposes. In our experiments, isvp@ssible to accurately recover
histograms with many more colors.

This method requires derivatives in two color channélandg. Here, we have used
red as one channel, and the average of green and blue fotie Derivatives are taken
in the simplest possible way, though convolution with thtefd

-1
[-1 0 1] and o |. (19)
1

Experimentation with more complex methods of measuringlthevative have shown
the above filters to be preferred.

5 Experiments

In all the synthetic experiments shown in this paper, thigailnimages are first processed
with a low-pass filter to make derivatives more reliable.sTiiter is applied once, before
warping, and so no similar process can be applied with reagjga. See Section 6 for
further discussion of this issue.

As a first example, Figure 1 shows the computation of an iawarfiistogram, and
compares it to a traditional histogram. We emphasize thatotily difference in the
computation of the two histograms is as contrasted in Eqonatl6 and 17.

In our experiments, we seek to answer two questions. Fiost, do invariant his-
tograms change under deformation or change in viewpointwillesee that invariant
histograms are nearly unchanging under distortions or pigmt changes that lead to
large changes in traditional histograms. Secondly, howngariant histograms change
under true changes in the scene? If the invariance was gairike price of simply being
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Figure 1: First row: initial image, ank(-) mapped over it. Second row: image warped
under a homography, ard-) mapped over it. Third row: traditional (unweighted) color
histogram. Fourth row: Invariant color histogram.

insensitive to the images, we would not have a useful tectmitVe will see that this is
not the case- under true changes in the scene, invariaoghashs appear to have similar
sensitivity as traditional histograms.

To investigate changes under deformation, we warped aremader a range of radial
distortions, and computed histograms for each resultiraggen To compute the difference
of two histograms we used the sum of squared differences. dkerthe comparison
between traditional and invariant histograms meaningé&dgpite traditional histograms
having vastly higher magnitudes, the error is scaled by time sf squares of the first
histogram.

hA _ hB)Z
differenceh®, nB) — 2elle — fic)” (20)
Yo(he)?
Results are shown in Figure 2. We can observe that thoughidreal histograms
increase in difference with larger distortions, the ingatihistograms are essentially un-
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Figure 2: Histograms under radial distortion. First row:eTirst image, and the result
of warping it under the minimum and maximum distortion cadiints. Second row: The
sum of absolute differences of the first image and each of #rped image. Bottom rows
show traditional and invariant histograms comparing inseagelabeled.

changed. Since the image we have used are taken from a sezreense [2], we can
compare how histograms change under small change in steudtlere, the actual sur-
faces in view are changing, so invariance is neither expaube desired. In Figure 2 we
compare the histograms resulting from images taken withéiroaally increasing view-

point. Here, the invariant histogram has similar perforogato the traditional histogram.
Notice particularly that despite the small change in vieinpdhe differences for the in-
variant histogram quickly become larger than those resyiiom the major distortions
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Figure 3: Effects of changing scene. Left: First image. €enFinal image. Right:
Histogram differences computed with respect to the firsgenia the scene. Compare to
Figure 2.

in Figure 2. This suggests that invariance with respect tordeation is possible with out
giving up sensitivity to true changes in the scene.

In Figure 4 we see the behavior of histograms under a rangeapéqgtive trans-
formation. There, the first image was warped under a rangeoofographiesH =
AH;+ (1—A)H2 where 0<= A <=1 We should note that fok = .5,H =1. We see
again here that the invariant histogram remains very sirdiéspite the distortions.

Finally, Figure 5 shows traditional and invariant histagsaderived from a pair of
real images. The errors in the invariant histogram are\ikkle to the fact that that
this technique accounts for deformation changes only- teorgdt is made to account for
changes due to lighting conditions, or image noise.

6 Conclusions

In this paper we have seen that, given two correspondinggaintwo images, if the
gradients in two color channels were available, the lodah@transformation could be
recovered. On this basis, it is possible to construct a nreasing the gradients which
cancels out the changes in image area resulting from viewpoising this measure, we
can integrate over areas in two images having a given coloe. résulting value will be
invariant to any transformation which is locally affine, dmehce essentially any smooth
transformation.

Future work should further address practical issues witthiriign these histograms in
real images. One could incorporate techniques to overcotoechanges due to lighting
[1]. Another issue is the measure of 'difference’ betweea imvariant histograms. Im-
ages, and specifically gradient measurements are ingvitablupted by noise. If many
measurements are taken the noise is likely to average dutibwvill not occur for few
measurements. A close observation of some of our resultgestgythat errors resultin the
histogram precisely at those points that have the smal@sponents in the traditional
histogram, and thuat those points derived from the fewest image measuremeéhis,
when measuring the 'distance’ between two invariant histog, it would be natural use
the number of pixels having each value, to weight the impaeeof each component.
This could be naturally phrased in a probabilistic view.

The technique developed in this paper will only work so fah@smathematical model
of the problem is accurate. We emphasize that this is oftétheocase. The method is
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Figure 4: Histograms under projective transformationsstiow: The first image, and
the result of warping it undef; andH,. Second row: The sum of absolute differences of
the first image and each of the warped image. Bottom rows staalitibnal and invariant
histograms comparing images as labeled.
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Figure 5: Traditional and Invariant histograms derivedrfreegmented regions of two
real images.

invariant only to pure deformations of the scene. In realges however, other effects
will often be present. These include changes due to refleeteand illumination, for
which the literature offers several potential solutiongriaps more problematic is the
fact that filtering is present in the imaging process. Thiansethat the signals in two
images are not just transformed version of each other-rdiftesignals are present.

Intuitively, our model of the imaging process suggests #raimage of a physical
object is simply the projection of the intensity functiontemhe image plane. Crucially,
our model states that if the scale of the observed objecth&taall derivatives will be
doubled. However, if a real image is taken of a rich textuoaerfifar away, rather than
resulting in high derivatives, the image will often be neaoastant color, with verjow
derivatives. If a technique is to work for arbitrary objeatsl scales, it will be necessary
to properly account for the real behavior of images unddestzanges.

The present work is extendable in two major directions.tline could use measure-
ments other than gradients to do the 'balancing’ requirenl¢ate invariance. Using other
measurements here could significantly increase robustfiésmge effects. Second, one
could create histograms of quantities other than color. Slggihistograms of more so-
phisticated filters, it is likely that recognition of reg®nould be made significantly more
powerful.
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